Korean J. Remote Sens. 2016; 32(5): 435-452
Published online: October 31, 2016
© Korean Society of Remote Sensing
최윤영·서명석†
공주대학교 대기과학과
Land Surface Temperature (LST) has been operationally retrieved from the Communication, Ocean, and Meteorological Satellite (COMS) data by the spilt-window method (CSW_v2.0) developed by Cho et al. (2015). Although the CSW_v2.0 retrieved the LST with a reasonable quality compared to the Moderate Resolution Imaging Spectroradiometer (MODIS) LST data, it showed a relatively poor performance for the strong inversion and lapse rate conditions. To solve this problem, the LST retrieval algorithm (CSW_v2.0) was updated using the simulation results of radiative transfer model (MODTRAN 4.0) by considering the diurnal variations of air temperature. In general, the upgraded version, CSW_v3.0 showed a similar correlation coefficient between the prescribed LSTs and retrieved LSTs (0.99), the relatively smaller bias (from -0.03 K to-0.012 K) and the Root Mean Square Error (RMSE) (from 1.39 K to 1.138 K). Particularly, CSW_v3.0 improved the systematic problems of CSW_v2.0 that were encountered when temperature differences between LST and air temperature are very large and/or small (inversion layers and superadiabatic lapse rates), and when the brightness temperature differences and surface emissivity differences were large. The bias and RMSE of CSW_v2.0 were reduced by 10-30% in CSW_v3.0. The indirect validation results using the MODIS LST data showed that CSW_3.0 improved the retrieval accuracy of LST in terms of bias (from -0.629 K to -0.049 K) and RMSE (from 2.537 K to 2.502 K) compared to the CSW_v2.0.
Keywords Land surface temperature, COMS, MODIS, split-window method
Korean J. Remote Sens. 2016; 32(5): 435-452
Published online October 31, 2016
Copyright © Korean Society of Remote Sensing.
최윤영·서명석†
공주대학교 대기과학과
Youn-Young Choi and Myoung-Seok Suh†
Department of Atmospheric Science, Kongju National University
Land Surface Temperature (LST) has been operationally retrieved from the Communication, Ocean, and Meteorological Satellite (COMS) data by the spilt-window method (CSW_v2.0) developed by Cho et al. (2015). Although the CSW_v2.0 retrieved the LST with a reasonable quality compared to the Moderate Resolution Imaging Spectroradiometer (MODIS) LST data, it showed a relatively poor performance for the strong inversion and lapse rate conditions. To solve this problem, the LST retrieval algorithm (CSW_v2.0) was updated using the simulation results of radiative transfer model (MODTRAN 4.0) by considering the diurnal variations of air temperature. In general, the upgraded version, CSW_v3.0 showed a similar correlation coefficient between the prescribed LSTs and retrieved LSTs (0.99), the relatively smaller bias (from -0.03 K to-0.012 K) and the Root Mean Square Error (RMSE) (from 1.39 K to 1.138 K). Particularly, CSW_v3.0 improved the systematic problems of CSW_v2.0 that were encountered when temperature differences between LST and air temperature are very large and/or small (inversion layers and superadiabatic lapse rates), and when the brightness temperature differences and surface emissivity differences were large. The bias and RMSE of CSW_v2.0 were reduced by 10-30% in CSW_v3.0. The indirect validation results using the MODIS LST data showed that CSW_3.0 improved the retrieval accuracy of LST in terms of bias (from -0.629 K to -0.049 K) and RMSE (from 2.537 K to 2.502 K) compared to the CSW_v2.0.
Keywords: Land surface temperature, COMS, MODIS, split-window method
Youngseok Kim, Siwoo Lee, Dongjin Cho, Jungho Im
Korean J. Remote Sens. 2024; 40(6): 1109-1125Kim Eun-kyu*, Kyu-Tae Lee *† and Myeong-Jae Jung*
Korean J. Remote Sens. 2017; 33(5): 607-615Yejin Lee, Kyungil Lee, Seonyoung Park
Korean J. Remote Sens. 2024; 40(6): 1379-1389