Related Articles

  • December 31, 2022

    0 32 8
    Abstract
    2025년도 발사예정인 농림위성은 광역농림상황관측용도로 개발된 5 m급 해상도를 갖는 중해상도 위성 이다. 위성영상 활용을 위해서는 위성영상에 대한 정밀센서모델을 수립하여 정확한 기하정보를 수립하는 것 이 중요하다. 선행 연구에서 지상기준점 칩과 위성영상을 정합하는 과정을 통해 자동으로 정밀센서모델을 수 립할 수 있음을 보고하였다. 따라서 위성영상의 기하정확도를 향상시키기 위해서는 지상기준점 칩 정합 성능 을 향상시켜야 한다. 이 논문은 중해상도 위성영상의 센서모델 정확도 향상을 위한 지상기준점 칩 정합 개선방 안을 제안한다. 고해상도 지상기준점 칩을 중해상도 위성영상 정밀센서모델링을 위해 사용할 경우의 중요한 기술요소는 상이한 공간해상도 처리방식과 최적 지상기준점 수량결정이다. 본 연구에서는 이러한 기술요소를 해결하기 위해 중해상도 위성영상과 지상기준점 칩 정합 시, 위성영상 업샘플링(upsampling) 배율과 사용한 칩 개수에 따른 칩 정합 성능을 비교 분석하였다. 실험에는 해상도가 5 m인 RapidEye 영상을 중해상도 위성영상 으로 사용하였으며, 해상도가 0.25 m인 항공정사영상과 0.5 m인 위성정사영상을 지상기준점 칩으로 제작하여 사용하였다. 정확도 분석은 수동으로 추출한 기준점을 사용하여 수행되었다. 실험결과, 업샘플링 배율 2 내지 3에서 정확도가 크게 향상되었으며 지상기준점 수량은 대략 100개인 경우 정확도가 유지되었다. 이러한 결과 로부터 중해상도 위성의 정밀센서모델 수립에 고해상도 지상기준점 칩 적용 가능성을 확인할 수 있었고, 기존 보다 향상된 정확도의 정밀센서모델이 수립됨을 확인하였다. 본 연구결과가 향후 농림위성에 활용될 수 있을 것으로 기대한다.
  • Research ArticleJune 30, 2024

    0 55 20
    Abstract
    Drone-mounted hyperspectral sensors (DHSs) have revolutionized remote sensing in agriculture by offering a cost-effective and flexible platform for high-resolution spectral data acquisition. Their ability to capture data at low altitudes minimizes atmospheric interference, enhancing their utility in agricultural monitoring and management. This study focused on addressing the challenges of radiometric and geometric distortions in preprocessing drone-acquired hyperspectral data. Radiometric correction, using the empirical line method (ELM) and spectral reference panels, effectively removed sensor noise and variations in solar irradiance, resulting in accurate surface reflectance values. Notably, the ELM correction improved reflectance for measured reference panels by 5–55%, resulting in a more uniform spectral profile across wavelengths, further validated by high correlations (0.97–0.99), despite minor deviations observed at specific wavelengths for some reflectors. Geometric correction, utilizing a rubber sheet transformation with ground control points, successfully rectified distortions caused by sensor orientation and flight path variations, ensuring accurate spatial representation within the image. The effectiveness of geometric correction was assessed using root mean square error (RMSE) analysis, revealing minimal errors in both east-west (0.00 to 0.081 m) and north-south directions (0.00 to 0.076 m). The overall position RMSE of 0.031 meters across 100 points demonstrates high geometric accuracy, exceeding industry standards. Additionally, image mosaicking was performed to create a comprehensive representation of the study area. These results demonstrate the effectiveness of the applied preprocessing techniques and highlight the potential of DHSs for precise crop health monitoring and management in smart agriculture. However, further research is needed to address challenges related to data dimensionality, sensor calibration, and reference data availability, as well as exploring alternative correction methods and evaluating their performance in diverse environmental conditions to enhance the robustness and applicability of hyperspectral data processing in agriculture.
  • Research ArticleOctober 31, 2024

    0 220 59
    Abstract
    This study conducted multi-sensor image classification by utilizing Google Earth Engine (GEE) and applying satellite imagery from Compact Advanced Satellite 500-1 (CAS500-1), Sentinel-1, and Sentinel-2. The Land Use and Land Cover classification was performed using the Random Forest algorithm provided by GEE. The study experimented with various combinations of input data, integrating CAS500-1, Sentinel-1, and Sentinel-2 imagery with Normalized Difference Vegetation Index (NDVI) data from CAS500-1. The study area focused on the Goryeong County region in Gyeongsangbuk-do, and the satellite imagery was acquired in early January 2023. The results of this study showed that the highest classified result (94.51%) in overall accuracy and Kappa coefficient (0.9342) were achieved when applying CAS500-1, Sentinel-1, Sentinel-2 imagery, and NDVI data. The NDVI data is believed to complement the CAS500-1 imagery, improving classification accuracy. This study confirmed that applying multi-sensor data can improve classification accuracy, and the high-resolution characteristics of CAS500-1 imagery are expected to enable more detailed analyses within GEE.
KSRS
October 2024 Vol. 40, No. 5, pp. 419-879

Most Keyword ?

What is Most Keyword?

  • It is the most frequently used keyword in articles in this journal for the past two years.

Most View

Editorial Office

Korean Journal of Remote Sensing