Most View

  • Research ArticleAugust 31, 2024

    80 22
    Abstract
    Since the release of Meta’s Segment Anything Model (SAM), a large-scale vision transformer generation model with rapid image segmentation capabilities, several studies have been conducted to apply this technology in various fields. In this study, we aimed to investigate the applicability of SAM for water bodies detection and extraction using the QGIS Geo-SAM plugin, which enables the use of SAM with satellite imagery. The experimental data consisted of Compact Advanced Satellite 500 (CAS500)-1 images. The results obtained by applying SAM to these data were compared with manually digitized water objects, Open Street Map (OSM), and water body data from the National Geographic Information Institute (NGII)-based hydrological digital map. The mean Intersection over Union (mIoU) calculated for all features extracted using SAM and these three-comparison data were 0.7490, 0.5905, and 0.4921, respectively. For features commonly appeared or extracted in all datasets, the results were 0.9189, 0.8779, and 0.7715, respectively. Based on analysis of the spatial consistency between SAM results and other comparison data, SAM showed limitations in detecting small-scale or poorly defined streams but provided meaningful segmentation results for water body classification.
  • Research ArticleAugust 31, 2024

    70 17

    Comparison of Lambertian Model on Multi-Channel Algorithm for Estimating Land Surface Temperature Based on Remote Sensing Imagery

    A Sediyo Adi Nugraha , Muhammad Kamal , Sigit Heru Murti, Wirastuti Widyatmanti

    Korean Journal of Remote Sensing 2024; 40(4): 397-418

    https://doi.org/10.7780/kjrs.2024.40.4.7

    Abstract
    The Land Surface Temperature (LST) is a crucial parameter in identifying drought. It is essential to identify how LST can increase its accuracy, particularly in mountainous and hill areas. Increasing the LST accuracy can be achieved by applying early data processing in the correction phase, specifically in the context of topographic correction on the Lambertian model. Empirical evidence has demonstrated that this particular stage effectively enhances the process of identifying objects, especially within areas that lack direct illumination. Therefore, this research aims to examine the application of the Lambertian model in estimating LST using the Multi-Channel Method (MCM) across various physiographic regions. Lambertian model is a method that utilizes Lambertian reflectance and specifically addresses the radiance value obtained from Sun-Canopy-Sensor (SCS) and Cosine Correction measurements. Applying topographical adjustment to the LST outcome results in a notable augmentation in the dispersion of LST values. Nevertheless, the area physiography is also significant as the plains terrain tends to have an extreme LST value of ≥ 350 K. In mountainous and hilly terrains, the LST value often falls within the range of 310–325 K. The absence of topographic correction in LST results in varying values: 22 K for the plains area, 12–21 K for hilly and mountainous terrain, and 7–9 K for both plains and mountainous terrains. Furthermore, validation results indicate that employing the Lambertian model with SCS and Cosine Correction methods yields superior outcomes compared to processing without the Lambertian model, particularly in hilly and mountainous terrain. Conversely, in plain areas, the Lambertian model’s application proves suboptimal. Additionally, the relationship between physiography and LST derived using the Lambertian model shows a high average R2 value of 0.99. The lowest errors (K) and root mean square error values, approximately ±2 K and 0.54, respectively, were achieved using the Lambertian model with the SCS method. Based on the findings, this research concluded that the Lambertian model could increase LST values. These corrected values are often higher than the LST values obtained without the Lambertian model.
  • February 28, 2024

    69 13

    Assessments of the GEMS NO2 Products Using Ground-Based Pandora and In-Situ Instruments over Busan, South Korea

    Serin Kim1, Ukkyo Jeong2*, Hanlim Lee3, Yeonjin Jung4, Jae Hwan Kim5

    Korean Journal of Remote Sensing 2024; 40(1): 1-8

    https://doi.org/10.7780/kjrs.2024.40.1.1

    Abstract
    Busan is the 6th largest port city in the world, where nitrogen dioxide (NO2) emissions from transportation and port industries are significant. This study aims to assess the NO2 products of the Geostationary Environment Monitoring Spectrometer (GEMS) over Busan using ground-based instruments (i.e., surface in-situ network and Pandora). The GEMS vertical column densities of NO2 showed reasonable consistency in the spatiotemporal variations, comparable to the previous studies. The GEMS data showed a consistent seasonal trend of NO2 with the Korea Ministry of Environment network and Pandora in 2022, which is higher in winter and lower in summer. These agreements prove the capability of the GEMS data to monitor the air quality in Busan. The correlation coefficient and the mean bias error between the GEMS and Pandora NO2 over Busan in 2022 were 0.53 and 0.023 DU, respectively. The GEMS NO2 data were also positively correlated with the ground-based in-situ network with a correlation coefficient of 0.42. However, due to the significant spatiotemporal variabilities of the NO2, the GEMS footprint size can hardly resolve small-scale variabilities such as the emissions from the road and point sources. In addition, relative biases of the GEMS NO2 retrievals to the Pandora data showed seasonal variabilities, which is attributable to the air mass factor estimation of the GEMS. Further studies with more measurement locations for longer periods of data can better contribute to assessing the GEMS NO2 data. Reliable GEMS data can further help us understand the Asian air quality with the diurnal variabilities.
  • ReviewAugust 31, 2024

    64 28

    Effects of Environmental Conditions on Vegetation Indices from Multispectral Images: A Review

    Md Asrakul Haque, Md Nasim Reza, Mohammod Ali, Md Rejaul Karim, Shahriar Ahmed, Kyung-Do Lee, Young Ho Khang, Sun-Ok Chung

    Korean Journal of Remote Sensing 2024; 40(4): 319-341

    https://doi.org/10.7780/kjrs.2024.40.4.1

    Abstract
    The utilization of multispectral imaging systems (MIS) in remote sensing has become crucial for large-scale agricultural operations, particularly for diagnosing plant health, monitoring crop growth, and estimating plant phenotypic traits through vegetation indices (VIs). However, environmental factors can significantly affect the accuracy of multispectral reflectance data, leading to potential errors in VIs and crop status assessments. This paper reviewed the complex interactions between environmental conditions and multispectral sensors emphasizing the importance of accounting for these factors to enhance the reliability of reflectance data in agricultural applications. An overview of the fundamentals of multispectral sensors and the operational principles behind vegetation index (VI) computation was reviewed. The review highlights the impact of environmental conditions, particularly solar zenith angle (SZA), on reflectance data quality. Higher SZA values increase cloud optical thickness and droplet concentration by 40–70%, affecting reflectance in the red (–0.01 to 0.02) and near-infrared (NIR) bands (–0.03 to 0.06), crucial for VI accuracy. An SZA of 45° is optimal for data collection, while atmospheric conditions, such as water vapor and aerosols, greatly influence reflectance data, affecting forest biomass estimates and agricultural assessments. During the COVID-19 lockdown, reduced atmospheric interference improved the accuracy of satellite image reflectance consistency. The NIR/Red edge ratio and water index emerged as the most stable indices, providing consistent measurements across different lighting conditions. Additionally, a simulated environment demonstrated that MIS surface reflectance can vary 10–20% with changes in aerosol optical thickness, 15–30% with water vapor levels, and up to 25% in NIR reflectance due to high wind speeds. Seasonal factors like temperature and humidity can cause up to a 15% change, highlighting the complexity of environmental impacts on remote sensing data. This review indicated the importance of precisely managing environmental factors to maintain the integrity of VIs calculations. Explaining the relationship between environmental variables and multispectral sensors offers valuable insights for optimizing the accuracy and reliability of remote sensing data in various agricultural applications.
  • Research ArticleAugust 31, 2024

    62 25
    Abstract
    Waterbody change detection using satellite images has recently been carried out in various regions in South Korea, utilizing multiple types of sensors. This study utilizes optical satellite images from Landsat and Sentinel-2 based on Google Earth Engine (GEE) to analyze long-term surface water area changes in four monitored small and medium-sized water supply dams and agricultural reservoirs in South Korea. The analysis covers 19 years for the water supply dams and 27 years for the agricultural reservoirs. By employing image analysis methods such as normalized difference water index, Canny Edge Detection, and Otsu’s thresholding for waterbody detection, the study reliably extracted water surface areas, allowing for clear annual changes in waterbodies to be observed. When comparing the time series data of surface water areas derived from satellite images to actual measured water levels, a high correlation coefficient above 0.8 was found for the water supply dams. However, the agricultural reservoirs showed a lower correlation, between 0.5 and 0.7, attributed to the characteristics of agricultural reservoir management and the inadequacy of comparative data rather than the satellite image analysis itself. The analysis also revealed several inconsistencies in the results for smaller reservoirs, indicating the need for further studies on these reservoirs. The changes in surface water area, calculated using GEE, provide valuable spatial information on waterbody changes across the entire watershed, which cannot be identified solely by measuring water levels. This highlights the usefulness of efficiently processing extensive long-term satellite imagery data. Based on these findings, it is expected that future research could apply this method to a larger number of dam reservoirs with varying sizes, shapes, and monitoring statuses, potentially yielding additional insights into different reservoir groups.
  • February 28, 2024

    62 13

    Analysis of Co- and Post-Seismic Displacement of the 2017 Pohang Earthquake in Youngilman Port and Surrounding Areas Using Sentinel-1 Time-Series SAR Interferometry

    Siung Lee1, Taewook Kim2, Hyangsun Han3*, Jin-Woo Kim4, Yeong-Beom Jeon5, Jong-Gun Kim5, Seung Chul Lee6

    Korean Journal of Remote Sensing 2024; 40(1): 19-31

    https://doi.org/10.7780/kjrs.2024.40.1.3

    Abstract
    Ports are vital social infrastructures that significantly influence both people’s lives and a country’s economy. In South Korea, the aging of port infrastructure combined with the increased frequency of various natural disasters underscores the necessity of displacement monitoring for safety management of the port. In this study, the time-series displacements of Yeongilman Port and surrounding areas in Pohang, South Korea, were measured by applying Permanent Scatterer Interferometric Synthetic Aperture Radar (PSInSAR) to Sentinel-1 SAR images collected from the satellite’s ascending (February 2017–July 2023) and descending (February 2017–December 2021) nodes, and the displacement associated with the 2017 Pohang earthquake in the port was analyzed. The southern (except the southernmost) and central parts of Yeongilman Port showed large displacements attributed to construction activities for about 10 months at the beginning of the observation period, and the coseismic displacement caused by the Pohang earthquake was up to 1.6 cm of the westward horizontal motion and 0.5 cm of subsidence. However, little coseismic displacement was observed in the southernmost part of the port, where reclamation was completed last, and in the northern part of the oldest port. This represents that the weaker the consolidation of the reclaimed soil in the port, the more vulnerable it is to earthquakes, and that if the soil is very weakly consolidated due to ongoing reclamation, it would not be significantly affected by earthquakes. Summer subsidence and winter uplift of about 1 cm have been repeatedly observed every year in the entire area of Yeongilman Port, which is attributed to volume changes in the reclaimed soil due to temperature changes. The ground of the 1st and 2nd General Industrial Complexes adjacent to Yeongilman Port subsided during the observation period, and the rate of subsidence was faster in the 1st Industrial Complex. The 1st Industrial Complex was observed to have a westward horizontal displacement of 3 mm and a subsidence of 6 mm as the coseismic displacement of the Pohang earthquake, while the 2nd Industrial Complex was analyzed to have been little affected by the earthquake. The results of this study allowed us to identify the time-series displacement characteristics of Yeongilman Port and understand the impact of earthquakes on the stability of a port built by coastal reclamation.
  • Research ArticleAugust 31, 2024

    50 17

    Applicability Analysis of Constructing UDM of Cloud and Cloud Shadow in High-Resolution Imagery Using Deep Learning

    Nayoung Kim, Yerin Yun, Jaewan Choi , Youkyung Han

    Korean Journal of Remote Sensing 2024; 40(4): 351-361

    https://doi.org/10.7780/kjrs.2024.40.4.3

    Abstract
    Satellite imagery contains various elements such as clouds, cloud shadows, and terrain shadows. Accurately identifying and eliminating these factors that complicate satellite image analysis is essential for maintaining the reliability of remote sensing imagery. For this reason, satellites such as Landsat-8, Sentinel-2, and Compact Advanced Satellite 500-1 (CAS500-1) provide Usable Data Masks (UDMs) with images as part of their Analysis Ready Data (ARD) product. Precise detection of clouds and their shadows is crucial for the accurate construction of these UDMs. Existing cloud and their shadow detection methods are categorized into threshold-based methods and Artificial Intelligence (AI)-based methods. Recently, AI-based methods, particularly deep learning networks, have been preferred due to their advantage in handling large datasets. This study aims to analyze the applicability of constructing UDMs for high-resolution satellite images through deep learning-based cloud and their shadow detection using open-source datasets. To validate the performance of the deep learning network, we compared the detection results generated by the network with pre-existing UDMs from Landsat-8, Sentinel-2, and CAS500-1 satellite images. The results demonstrated that high accuracy in the detection outcomes produced by the deep learning network. Additionally, we applied the network to detect cloud and their shadow in KOMPSAT-3/3A images, which do not provide UDMs. The experiment confirmed that the deep learning network effectively detected cloud and their shadow in high-resolution satellite images. Through this, we could demonstrate the applicability that UDM data for high-resolution satellite imagery can be constructed using the deep learning network.
  • Research ArticleAugust 31, 2024

    42 9

    Analysis of Applicability of RPC Correction Using Deep Learning-Based Edge Information Algorithm

    Jaewon Hur, Changhui Lee, Doochun Seo, Jaehong Oh, Changno Lee, Youkyung Han

    Korean Journal of Remote Sensing 2024; 40(4): 387-396

    https://doi.org/10.7780/kjrs.2024.40.4.6

    Abstract
    Most very high-resolution (VHR) satellite images provide rational polynomial coefficients (RPC) data to facilitate the transformation between ground coordinates and image coordinates. However, initial RPC often contains geometric errors, necessitating correction through matching with ground control points (GCPs). A GCP chip is a small image patch extracted from an orthorectified image together with height information of the center point, which can be directly used for geometric correction. Many studies have focused on area-based matching methods to accurately align GCP chips with VHR satellite images. In cases with seasonal differences or changed areas, edge-based algorithms are often used for matching due to the difficulty of relying solely on pixel values. However, traditional edge extraction algorithms, such as canny edge detectors, require appropriate threshold settings tailored to the spectral characteristics of satellite images. Therefore, this study utilizes deep learning-based edge information that is insensitive to the regional characteristics of satellite images for matching. Specifically, we use a pretrained pixel difference network (PiDiNet) to generate the edge maps for both satellite images and GCP chips. These edge maps are then used as input for normalized cross-correlation (NCC) and relative edge cross-correlation (RECC) to identify the peak points with the highest correlation between the two edge maps. To remove mismatched pairs and thus obtain the bias-compensated RPC, we iteratively apply the data snooping. Finally, we compare the results qualitatively and quantitatively with those obtained from traditional NCC and RECC methods. The PiDiNet network approach achieved high matching accuracy with root mean square error (RMSE) values ranging from 0.3 to 0.9 pixels. However, the PiDiNet-generated edges were thicker compared to those from the canny method, leading to slightly lower registration accuracy in some images. Nevertheless, PiDiNet consistently produced characteristic edge information, allowing for successful matching even in challenging regions. This study demonstrates that improving the robustness of edge-based registration methods can facilitate effective registration across diverse regions.
  • Research ArticleJune 30, 2024

    34 9

    Spatiotemporal Monitoring of Soybean Growth and Water Status Using Drone-Based Shortwave Infrared (SWIR) Imagery

    Inji Lee , Heung-Min Kim , Youngmin Kim , Hoyong Ahn, Jae-Hyun Ryu, Hoejeong Jeong, Hyun-Dong Moon, Jaeil Cho, Seon-Woong Jang

    Korean Journal of Remote Sensing 2024; 40(3): 275-284

    https://doi.org/10.7780/kjrs.2024.40.3.4

    Abstract
    Monitoring crop growth changes and water content is crucial in the agricultural sector. This study utilized drones equipped with Short Wavelength Infrared (SWIR) sensors, sensitive to moisture changes, to observe soybeans’ growth and water content variations. We confirmed that as soybeans grow more vigorously, their water content increases and differences in irrigation levels lead to decreases in vegetation and moisture indices. This suggests that waterlogging slows down soybean growth and reduces water content, highlighting the importance of detailed monitoring of vegetation and moisture indices at different growth stages to enhance crop productivity and minimize damage from waterlogging. Such monitoring could also preemptively detect and prevent the adverse effects of moisture changes, such as droughts, on crop growth. By demonstrating the potential for early diagnosis of moisture stress using drone-based SWIR sensors, this research suggests improvements in the efficiency of large-scale crop management and increases in yield, contributing to agricultural production.
  • Research ArticleJune 30, 2024

    33 15
    Abstract
    This study compares Static Terrestrial Laser Scanning (STLS) with the conventional Total Station (TS) method for the geometric assessment of cylindrical storage tanks. With the crucial need for maintaining tank integrity in the oil and gas industry, STLS and TS methods are evaluated for their efficacy in assessing tank deformations. Using STLS and TS, the roundness and verticality of two cylindrical tanks were examined. A deformation analysis based on American Petroleum Institute (API) standards was then provided. Key objectives included comparing the two methods according to API standards, evaluating the workflow for STLS point cloud processing, and presenting the pros and cons of the STLS method for tank geometric assessment. The study found that STLS, with its detailed and high-resolution data acquisition, offers a substantial advantage in having a comprehensive structural assessment over TS. However, STLS requires more processing time and prior knowledge about the data to tune certain parameters and achieve accurate assessment. The project outcomes intend to enhance industry professionals’ understanding of applying STLS and TS to tank assessments, helping them choose the best method for their specific requirements.
KSRS
August 2024 Vol. 40, No. 4, pp. 319-418

Most Keyword ?

What is Most Keyword?

  • It is the most frequently used keyword in articles in this journal for the past two years.

Most View

Editorial Office

Korean Journal of Remote Sensing