Most Downloaded

  • Research ArticleApril 30, 2024

    14 5

    High-Resolution Mapping Techniques for Coastal Debris Using YOLOv8 and Unmanned Aerial Vehicle

    Suho Bak , Heung-Min Kim , Youngmin Kim , Inji Lee , Miso Park , Tak-Young Kim, Seon Woong Jang

    Korean Journal of Remote Sensing 2024; 40(2): 151-166

    https://doi.org/10.7780/kjrs.2024.40.2.3

    Abstract
    Coastal debris presents a significant environmental threat globally. This research sought to improve the monitoring methods for coastal debris by employing deep learning and remote sensing technologies. To achieve this, an object detection approach utilizing the You Only Look Once (YOLO)v8 model was implemented to develop a comprehensive image dataset for 11 primary types of coastal debris in our country, proposing a protocol for the real-time detection and analysis of debris. Drone imagery was collected over Sinja Island, situated at the estuary of the Nakdong River, and analyzed using our custom YOLOv8-based analysis program to identify type-specific hotspots of coastal debris. The deployment of these mapping and analysis methodologies is anticipated to be effectively utilized in managing coastal debris.
  • February 28, 2024

    16 5

    Development of Deep Learning Based Ensemble Land Cover Segmentation Algorithm Using Drone Aerial Images

    Hae-Gwang Park1, Seung-Ki Beak2, Seung Hyun Jeong3*

    Korean Journal of Remote Sensing 2024; 40(1): 71-80

    https://doi.org/10.7780/kjrs.2024.40.1.7

    Abstract
    In this study, a proposed ensemble learning technique aims to enhance the semantic segmentation performance of images captured by Unmanned Aerial Vehicles (UAVs). With the increasing use of UAVs in fields such as urban planning, there has been active development of techniques utilizing deep learning segmentation methods for land cover segmentation. The study suggests a method that utilizes prominent segmentation models, namely U-Net, DeepLabV3, and Fully Convolutional Network (FCN), to improve segmentation prediction performance. The proposed approach integrates training loss, validation accuracy, and class score of the three segmentation models to enhance overall prediction performance. The method was applied and evaluated on a land cover segmentation problem involving seven classes: buildings, roads, parking lots, fields, trees, empty spaces, and areas with unspecified labels, using images captured by UAVs. The performance of the ensemble model was evaluated by mean Intersection over Union (mIoU), and the results of comparing the proposed ensemble model with the three existing segmentation methods showed that mIoU performance was improved. Consequently, the study confirms that the proposed technique can enhance the performance of semantic segmentation models.
  • February 28, 2024

    15 5
    Abstract
    Faced with aging populations, declining resources, and limited agricultural productivity, rural areas in South Korea require innovative solutions. This study investigated the potential of drone-based vegetation indices (VIs) to analyze soybean growth patterns in open-field smart agriculture in Goesan- gun, Chungbuk Province, South Korea. We monitored multi-seasonal normalized difference vegetation index (NDVI) and the normalized difference red edge (NDRE) data for three soybean lots with different irrigation methods (subsurface drainage, conventional, subsurface drip irrigation) using drone remote sensing. Combining NDVI (photosynthetically active biomass, PAB) and NDRE (chlorophyll) offered a comprehensive analysis of soybean growth, capturing both overall health and stress responses. Our analysis revealed distinct growth patterns for each lot. Lot A (subsurface drainage) displayed early vigor and efficient resource utilization (peaking at NDVI 0.971 and NDRE 0.686), likely due to the drainage system. Lot B (conventional cultivation) showed slower growth and potential limitations (peaking at NDVI 0.963 and NDRE 0.681), suggesting resource constraints or stress. Lot C (subsurface drip irrigation) exhibited rapid initial growth but faced later resource limitations (peaking at NDVI 0.970 and NDRE 0.695). By monitoring NDVI and NDRE variations, farmers can gain valuable insights to optimize resource allocation (reducing costs and environmental impact), improve crop yield and quality (maximizing yield potential), and address rural challenges in South Korea. This study demonstrates the promise of drone-based VIs for revitalizing open-field agriculture, boosting farm income, and attracting young talent, ultimately contributing to a more sustainable and prosperous future for rural communities. Further research integrating additional data and investigating physiological mechanisms can lead to even more effective management strategies and a deeper understanding of VI variations for optimized crop performance.
  • December 31, 2023

    7 5

    A Case Study of Amplitude-Based Change Detection Methods Using Synthetic Aperture Radar Images

    홍성재1)·채성호2)·오관영2)·양희인 3)*

    Korean Journal of Remote Sensing 2023; 39(6): 1791-1799

    https://doi.org/10.7780/kjrs.2023.39.6.3.11

    Abstract
    The Korea Aerospace Research Institute is responsible for supplying and supporting the utilization of imagery data from the Arirang satellite series for organizations affiliated with the Government Satellite Information Application Consultation. Most of them primarily utilize optical imagery, and there is a relative lack of utilization of Synthetic Aperture Radar (SAR) imagery. In this paper, as part of supporting the use of SAR images, we investigated SAR intensity-based change detection algorithms and their use cases that have been researched to determine SAR intensity-based change detection algorithms to be developed in the future. As a result of the research, we found that various algorithms utilizing intensity difference, correlation coefficients, histograms, or polarimetric information have been researched by numerous researchers to detect and analyze change pixels and the applications of change detection algorithms have been studied in various fields such as a city, flood, forest fire, and vegetation. This study will serve as a reference for the development of SAR change detection algorithms, intended for utilization in the Government Satellite Information Application Consultation.
  • December 31, 2023

    10 5
    Abstract
    Satellite-based fog detection algorithms are being developed to detect fog in real-time over a wide area, with a focus on the Korean Peninsula (KorPen). The GEO-KOMPSAT-2A/Advanced Meteorological Imager (GK2A/AMI, GK2A) satellite offers an excellent temporal resolution (10 min) and a spatial resolution (500 m), while GEO-KOMPSAT-2B/Geostationary Ocean Color Imager-II (GK2B/GOCI-II, GK2B) provides an excellent spatial resolution (250 m) but poor temporal resolution (1 h) with only visible channels. To enhance the fog detection level (10 min, 250 m), we developed a fused GK2AB fog detection algorithm (FDA) of GK2A and GK2B. The GK2AB FDA comprises three main steps. First, the Korea Meteorological Satellite Center’s GK2A daytime fog detection algorithm is utilized to detect fog, considering various optical and physical characteristics. In the second step, GK2B data is extrapolated to 10-min intervals by matching GK2A pixels based on the closest time and location when GK2B observes the KorPen. For reflectance, GK2B normalized visible (NVIS) is corrected using GK2A NVIS of the same time, considering the difference in wavelength range and observation geometry. GK2B NVIS is extrapolated at 10-min intervals using the 10-min changes in GK2A NVIS. In the final step, the extrapolated GK2B NVIS, solar zenith angle, and outputs of GK2A FDA are utilized as input data for machine learning (decision tree) to develop the GK2AB FDA, which detects fog at a resolution of 250 m and a 10-min interval based on geographical locations. Six and four cases were used for the training and validation of GK2AB FDA, respectively. Quantitative verification of GK2AB FDA utilized ground observation data on visibility, wind speed, and relative humidity. Compared to GK2A FDA, GK2AB FDA exhibited a fourfold increase in spatial resolution, resulting in more detailed discrimination between fog and non-fog pixels. In general, irrespective of the validation method, the probability of detection (POD) and the Hanssen-Kuiper Skill score (KSS) are high or similar, indicating that it better detects previously undetected fog pixels. However, GK2AB FDA, compared to GK2A FDA, tends to over-detect fog with a higher false alarm ratio and bias.
  • December 31, 2023

    12 5

    Land Cover Classifier Using Coordinate Hash Encoder

    윤용선 1)·권동재 2)*

    Korean Journal of Remote Sensing 2023; 39(6): 1771-1777

    https://doi.org/10.7780/kjrs.2023.39.6.3.9

    Abstract
    With the advancements of deep learning, many semantic segmentation-based methods for land cover classification have been proposed. However, existing deep learning-based models only use image information and cannot guarantee spatiotemporal consistency. In this study, we propose a land cover classification model using geographical coordinates. First, the coordinate features are extracted through the Coordinate Hash Encoder, which is an extension of the Multi-resolution Hash Encoder, an implicit neural representation technique, to the longitude-latitude coordinate system. Next, we propose an architecture that combines the extracted coordinate features with different levels of U-net decoder. Experimental results show that the proposed method improves the mean intersection over union by about 32% and improves the spatiotemporal consistency.
  • December 31, 2023

    11 5

    Development of Tree Detection Methods for Estimating LULUCF Settlement Greenhouse Gas Inventories Using Vegetation Indices

    이준우1)·한유한1)·이정택1)·박진혁1)·김근한 2)*

    Korean Journal of Remote Sensing 2023; 39(6): 1721-1730

    https://doi.org/10.7780/kjrs.2023.39.6.3.5

    Abstract
    As awareness of the problem of global warming emerges around the world, the role of carbon sinks in settlement is increasingly emphasized to achieve carbon neutrality in urban areas. In order to manage carbon sinks in settlement, it is necessary to identify the current status of carbon sinks. Identifying the status of carbon sinks requires a lot of manpower and time and a corresponding budget. Therefore, in this study, a map predicting the location of trees was created using already established tree location information and Sentinel-2 satellite images targeting Seoul. To this end, after constructing a tree presence/absence dataset, structured data was generated using 16 types of vegetation indices information constructed from satellite images. After learning this by applying the Extreme Gradient Boosting (XGBoost) model, a tree prediction map was created. Afterward, the correlation between independent and dependent variables was investigated in model learning using the Shapely value of Shapley Additive exPlanations (SHAP). A comparative analysis was performed between maps produced for local parts of Seoul and sub-categorized land cover maps. In the case of the tree prediction model produced in this study, it was confirmed that even hard-to-detect street trees around the main street were predicted as trees.
  • December 31, 2023

    12 5

    KOMPSAT Image Processing and Analysis

    이광재 1)*·오관영 2)·채성호 2)·이선구 1)

    Korean Journal of Remote Sensing 2023; 39(6): 1671-1678

    https://doi.org/10.7780/kjrs.2023.39.6.3.1

    Abstract
    The Korea multi-purpose satellite (KOMPSAT) series consisting of multi-sensors has been used in various fields such as land, environmental monitoring, and disaster analysis since its first launch in 1999. Recently, as various information processing technologies (high-speed computing technology, computer vision, artificial intelligence, etc.) that are rapidly developing are utilized in the field of remote sensing, it has become possible to develop more various satellite image processing and analysis algorithms. In this special issue, we would like to introduce recently researched technologies related to the KOMPSAT image application and research topics participated in the 2023 Satellite Information Application Contest.
  • December 31, 2023

    12 5

    GOCI-II Based Low Sea Surface Salinity and Hourly Variation by Typhoon Hinnamnor

    김소현1)·김대원2)·조영헌 3)*

    Korean Journal of Remote Sensing 2023; 39(6): 1605-1613

    https://doi.org/10.7780/kjrs.2023.39.6.2.8

    Abstract
    The physical properties of the ocean interior are determined by temperature and salinity. To observe them, we rely on satellite observations for broad regions of oceans. However, the satellite for salinity measurement, Soil Moisture Active Passive (SMAP), has low temporal and spatial resolutions; thus, more is needed to resolve the fast-changing coastal environment. To overcome these limitations, the algorithm to use the Geostationary Ocean Color Imager-II (GOCI-II) of the Geo-Kompsat-2B (GK- 2B) was developed as the inputs for a Multi-layer Perceptron Neural Network (MPNN). The result shows that coefficient of determination (R2), root mean square error (RMSE), and relative root mean square error (RRMSE) between GOCI-II based sea surface salinity (SSS) (GOCI-II SSS) and SMAP was 0.94, 0.58 psu, and 1.87%, respectively. Furthermore, the spatial variation of GOCI-II SSS was also very uniform, with over 0.8 of R2 and less than 1 psu of RMSE. In addition, GOCI-II SSS was also compared with SSS of Ieodo Ocean Research Station (I-ORS), suggesting that the result was slightly low, which was further analyzed for the following reasons. We further illustrated the valuable information of high spatial and temporal variation of GOCI-II SSS to analyze SSS variation by the 11th typhoon, Hinnamnor, in 2022. We used the mean and standard deviation (STD) of one day of GOCI-II SSS, revealing the high spatial and temporal changes. Thus, this study will shed light on the research for monitoring the highly changing marine environment.
  • December 31, 2023

    13 5

    Marine Heat Waves Detection in Northeast Asia Using COMS/MI and GK-2A/AMI Sea Surface Temperature Data (2012–2021)

    우종호 1)·정대성2)·심수영2)·김나연3)·박성우3)·손은하4)·김미자5)·한경수 6)*

    Korean Journal of Remote Sensing 2023; 39(6): 1477-1482

    https://doi.org/10.7780/kjrs.2023.39.6.1.24

    Abstract
    This study examines marine heat wave (MHW) in the Northeast Asia region from 2012 to 2021, utilizing geostationary satellite Communication, Ocean, and Meteorological Satellite (COMS)/ Meteorological Imager sensor (MI) and GEO-KOMPSAT-2A (GK-2A)/Advanced Meteorological Imager sensor (AMI) Sea Surface Temperature (SST) data. Our analysis has identified an increasing trend in the frequency and intensity of MHW events, especially post-2018, with the year 2020 marked by significantly prolonged and intense events. The statistical validation using Optimal Interpolation (OI) SST data and satellite SST data through T-test assessment confirmed a significant rise in sea surface temperatures, suggesting that these changes are a direct consequence of climate change, rather than random variations. The findings revealed in this study serve the necessity for ongoing monitoring and more granular analysis to inform long-term responses to climate change. As the region is characterized by complex topography and diverse climatic conditions, the insights provided by this research are critical for understanding the localized impacts of global climate dynamics.
KSRS
August 2024 Vol. 40, No. 4, pp. 319-418

Most Keyword ?

What is Most Keyword?

  • It is the most frequently used keyword in articles in this journal for the past two years.

Most View

Editorial Office

Korean Journal of Remote Sensing